Generalization of Relativistic Particle Dynamics on the Case of Non-riemannian Space-time Geometry

نویسنده

  • Yuri A. Rylov
چکیده

Conventional relativistic dynamics of a pointlike particle is generalized on the case of arbitrary non-Riemannian space-time geometry. Non-Riemannian geometry is an arbitrary physical geometry, i.e. a geometry, described completely by the world function of the space-time geometry. The physical geometry may be discrete, or continuous. It may be granular (partly continuous and partly discrete). As a rule the non-Riemannian geometry is nonaxiomatizable, because the equivalence relation is intransitive. The dynamic equations are the difference equations. They do not contain references to a dimension and to a coordinate system. The generalization is produced on the dynamics of composite particles, which may be identified with elementary particles. The granular space-time geometry generates multivariant motion, which is responsible for quantum effects. It generates a discrimination mechanism, which is responsible for discrete values of the elementary particles parameters. The quantum principles appear to be needless in such a dynamics.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

شبیه‌سازی نسبیتی معادله ولاسوف برای انبساط پلاسما به خلاء

  In this study, relativistic Vlasov simulation of plasma for expansion of collisionless plasma for into vacuum is presented. The model is based on 1+1 dimensional phase space and electrostatic approximation. For this purpose, the electron dynamics is studied by the relativistic Vlasov equation. Regardless of the ions temperature, fluid equations are used for their dynamics. The initial electro...

متن کامل

On the k-nullity foliations in Finsler geometry

Here, a Finsler manifold $(M,F)$ is considered with corresponding curvature tensor, regarded as $2$-forms on the bundle of non-zero tangent vectors. Certain subspaces of the tangent spaces of $M$ determined by the curvature are introduced and called $k$-nullity foliations of the curvature operator. It is shown that if the dimension of foliation is constant, then the distribution is involutive...

متن کامل

A Geometry Preserving Kernel over Riemannian Manifolds

Abstract- Kernel trick and projection to tangent spaces are two choices for linearizing the data points lying on Riemannian manifolds. These approaches are used to provide the prerequisites for applying standard machine learning methods on Riemannian manifolds. Classical kernels implicitly project data to high dimensional feature space without considering the intrinsic geometry of data points. ...

متن کامل

Identification of Riemannian foliations on the tangent bundle via SODE structure

The geometry of a system of second order differential equations is the geometry of a semispray, which is a globally defined vector field on TM. The metrizability of a given semispray is of special importance. In this paper, the metric associated with the semispray S is applied in order to study some types of foliations on the tangent bundle which are compatible with SODE structure. Indeed, suff...

متن کامل

modification of

The third modification of the space-time geometry is considered. (The first modification is the spacial relativity, the second one is the general relativity.) After the third modification of the space-time geometry the motion of free particles become to be primordially stochastic (multivariant). This circumstance forces one to construct a multivariant dynamics. The multivariant dynamics is the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009